Adjusting power for a baseline covariate in linear models.
نویسندگان
چکیده
The analysis of covariance provides a common approach to adjusting for a baseline covariate in medical research. With Gaussian errors, adding random covariates does not change either the theory or the computations of general linear model data analysis. However, adding random covariates does change the theory and computation of power analysis. Many data analysts fail to fully account for this complication in planning a study. We present our results in five parts. (i) A review of published results helps document the importance of the problem and the limitations of available methods. (ii) A taxonomy for general linear multivariate models and hypotheses allows identifying a particular problem. (iii) We describe how random covariates introduce the need to consider quantiles and conditional values of power. (iv) We provide new exact and approximate methods for power analysis of a range of multivariate models with a Gaussian baseline covariate, for both small and large samples. The new results apply to the Hotelling-Lawley test and the four tests in the "univariate" approach to repeated measures (unadjusted, Huynh-Feldt, Geisser-Greenhouse, Box). The techniques allow rapid calculation and an interactive, graphical approach to sample size choice. (v) Calculating power for a clinical trial of a treatment for increasing bone density illustrates the new methods. We particularly recommend using quantile power with a new Satterthwaite-style approximation.
منابع مشابه
Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation.
Covariate adjustment using linear models for continuous outcomes in randomized trials has been shown to increase efficiency and power over the unadjusted method in estimating the marginal effect of treatment. However, for binary outcomes, investigators generally rely on the unadjusted estimate as the literature indicates that covariate-adjusted estimates based on the logistic regression models ...
متن کاملThe role of cluster size and intra-cluster correlations when adjusting for covariates in the analysis of cluster randomised trials
Reports of clinical trials often include adjusted analyses, which incorporate covariate data into the analysis model. Adjusting for covariates can increase the precision of treatment effect estimates and increase the power of statistical tests, without the need to increase sample size. In individually randomised trials, the main reason to adjust for a particular covariate is that it is expected...
متن کاملRank power of metrics used to assess QTc interval prolongation by clinical trial simulation.
Monte Carlo simulation was used to assess the type I error rate and rank order of power for six different metrics using linear mixed-effect models, including two variables recommended by the European Agency for the Evaluation of Medicinal Products (EMEA) in the analysis of QTc interval data. The metrics analyzed were maximal change in QTc interval from baseline, maximal QTc interval, area under...
متن کاملA comparison of methods to adjust for continuous covariates in the analysis of randomised trials.
BACKGROUND Although covariate adjustment in the analysis of randomised trials can be beneficial, adjustment for continuous covariates is complicated by the fact that the association between covariate and outcome must be specified. Misspecification of this association can lead to reduced power, and potentially incorrect conclusions regarding treatment efficacy. METHODS We compared several meth...
متن کاملPower and sample size calculations for generalized regression models with covariate measurement error.
Covariate measurement error is often a feature of scientific data used for regression modelling. The consequences of such errors include a loss of power of tests of significance for the regression parameters corresponding to the true covariates. Power and sample size calculations that ignore covariate measurement error tend to overestimate power and underestimate the actual sample size required...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 22 16 شماره
صفحات -
تاریخ انتشار 2003